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ABSTRACT

Understanding the effects of weather on quail reproduction in semiarid environments requires simultaneous consideration of temperature
and precipitation data. Therefore, we used neural modeling to assess the interactive effects of summer (Jun–Aug) temperatures (monthly
means of daily maxima) and seasonal precipitation (totals) on age ratios (juvenile/adult) of northern bobwhites (Colinus virginianus)
in south Texas based on data collected during 1940–97 (n � 35, 23 years missing). Age ratios increased with June temperature. Ratios
were insensitive to mean maximum daily temperature in July up to 36�C, when they began to decline rapidly. Ratios were insensitive
to August temperatures. Ratios increased in an asymptotic manner with fall (Sep–Nov), spring (Mar–May), and summer precipitation,
and were least sensitive to fall precipitation and most sensitive to spring precipitation. Based on our analysis, temperature and precip-
itation influenced bobwhite production in a complex, nonlinear manner that seemed to contain thresholds and asymptotes. Low tem-
peratures can ameliorate the negative effects of drought, and high temperatures can suppress the positive effects of precipitation. The
apparent asymptotic effect of precipitation, given temperature, illustrates that assumed linearity between precipitation and production
may lead to errors of interpretation and expectation for production in a particular year.
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INTRODUCTION

Annual and seasonal variation in precipitation ex-
plains a good deal of the variation in production and
abundance of quails in semiarid environments. Kiel
(1976) observed that age ratios, an index of produc-
tion, were a linear function of May–July precipitation
in southern Texas. Likewise, precipitation explains a
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portion of the variation in productivity of scaled quail
(Callipepla squamata; Campbell et al. 1973), Califor-
nia quail (C. californica; Francis 1970); Gambel’s
quail (C. gambelii; Swank and Gallizioli 1954), and
Montezuma quail (Cyrtonyx montezumae; Brown
1979).

The suppressing effects of high temperatures on
reproduction of bobwhites and other quails also are
well established, at least in a correlative sense (Leo-
pold 1933, Robinson and Baker 1955, Reid and Good-
rum 1960, Speake and Haugen 1960, Stanford 1972).
Guthery et al. (2001) provided evidence that annual
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variation in heat loads in the Rio Grande Plains was
sufficient to explain boom-bust population behavior of
bobwhites in this region. Guthery et al. (2000b) hy-
pothesized that global warming could reduce the per-
centage of hens that attempts to lay, the length of the
laying season, and the number of nesting attempts;
these reductions would be expected to suppress annual
production.

Recently, researchers have addressed the com-
bined effects of temperature and precipitation on pro-
duction. Heffelfinger et al. (1999) determined that for
Gambel’s quail in Arizona, the effects of temperature
and precipitation were interactive. For example, cooler
temperatures could reverse the effects of low rainfall,
and hotter temperatures could reverse the effects of
high rainfall. Bridges et al. (2001) found that the Mod-
ified Palmer Drought Severity Index was a stronger
correlate of bobwhite populations than raw precipita-
tion in the South Texas Plains. The Palmer Index in-
corporates temperature, among other variables, into a
precipitation-related variable.

Our objective was to further explore the interactive
effects of seasonal precipitation and summer temper-
atures on bobwhite age ratios in a semiarid environ-
ment (South Texas Plains). We used age ratio records
collected over a 58-year period and modeled these ra-
tios based on summer temperature maxima (means)
and seasonal precipitation. This effort served to place
at risk the findings of Heffelfinger et al. (1999). We
also developed probability distributions for the weath-
er variables used in modeling so the likelihood of
model output could be interpreted.

METHODS

The age ratio (juveniles/adult) data came from
Lehmann (1984:133; 1940–1972) and records from
the Chaparral Wildlife Management Area (1973–1997;
Dimmit and LaSalle counties) operated by Texas Parks
and Wildlife Department. Based on large samples
(�18,534), Lehmann’s data before 1970 probably
came from regional wing collections and were listed
only as ‘‘South Texas quail.’’ For 1970–1972, his rec-
ords were from Kiel (1976). All records (Lehmann,
Chaparral Area) were based on harvested bobwhites.
We deleted 2 outliers (�4 SDs from the mean). With
missing values in some years, the data set contained
41 age ratios obtained during 1940–1997.

We used weather records (Earthinfo, Inc., Boulder,
Colorado, USA) from Falfurrias and Carrizo Springs,
Texas, because these 2 stations had long-term data sets
that were complete relative to other potential data
sources. To obtain weather data for age ratio modeling,
we used weather records from Falfurrias unless records
for a particular year were missing, in which case we
used records from Carrizo Springs. In some years
weather records were missing from both stations. The
resulting data set consisted of 35 observations with 32
weather records based on Falfurrias data and 3 on Car-
izzo Springs data. Variables used in modeling age ra-
tios included mean maximum daily temperatures in

June, July, and August, and total precipitation in fall
(Sep–Nov of preceding year), winter (Dec–Feb),
spring (Mar–May), and summer (Jun–Aug).

We used neural modeling with back propagation
of errors (Smith 1996) to develop multivariate models
of the age ratio as a function of weather variables.
Neural modeling is a powerful, nonparametric method
of describing functional relationships. We modeled us-
ing commercial software (Neural Connections, SPSS
Inc., Chicago, Illinois, USA). The model selected con-
sisted of 7 input nodes (the weather variables), 2 hid-
den nodes or processing elements, and 1 output node
(age ratio). We modeled on 5 randomly drawn subsets
of the data (80% of data) to subjectively determine
whether modeling on different portions of the data set
resulted in similar projected relationships between age
ratio and weather variables. Because the projections
were generally similar, we report results from the mod-
el that yielded the smoothest functional relationships.
This model was generated (trained) with 80% of the
data, randomly drawn, and tested with the remaining
20% of the data. We generated artificial data and mod-
eled on these data to understand how the age ratio
changed with changes in an independent variable. We
held other variables constant at their means within the
age ratio dataset when modeling the effects of a given
independent variable.

We developed beta distributions with parameters
estimated by the method of matching moments (Evans
et al. 1993) to describe weather features from the Fal-
furrias station. We used the beta distribution because
of its flexibility and simplicity (2 parameters) and be-
cause this distribution has served as the basis for sto-
chastic modeling of bobwhite dynamics (Guthery et
al. 2000a). The probability distributions presented here
could be used in the Guthery et al. (2000a) model.
The weather data were collected over 1908–1997 with
11 years missing (n � 79). An outlier for fall precip-
itation was removed, resulting inn � 78 for that sea-
son. Also, the beta distribution failed to adequately
describe June temperature records, so we used the nor-
mal distribution for this month.

RESULTS

The linear correlation between observed age ratios
and those predicted by the neural model wasr � 0.77
(n � 28) for the training data andr � 0.55 (n � 7)
for the validation data. When the model was applied
using mean values for all weather variables, it pre-
dicted an age ratio of 2.21 juveniles/adult, which com-
pared with the mean estimated from the data of 2.45
� 0.29 (SE) juveniles/adult. These results indicated the
neural model identified relationships in the data, but
that a large percentage of variation in the data re-
mained unexplained.

The simulated relationships between the age ratio
and temperature and precipitation variables were de-
veloped on the samex–y scales (Figs. 1 and 2) so that
sensitivity of age ratio to a variable could be estimated
by the ranges of predictions (larger range, more sen-



101BOBWHITE AGE RATIOS

Fig. 1. Neural model predictions of northern bobwhite age ra-
tios in south Texas as a function of mean maximum tempera-
tures in June, July, and August during 1940–1997 (23 years
missing). The predictions were generated for any 1 variable by
holding values for other variables constant at their means in the
dataset. Independent variables included mean maximum tem-
peratures and precipitation (mm) for winter, spring, summer, and
fall.

Fig. 2. Neural model predictions of northern bobwhite age ra-
tios in south Texas as a function of total seasonal precipitation
during 1940–1997 (23 years missing). The predictions were gen-
erated for any 1 variable by holding values for other variables
constant at their means in the dataset. Independent variables
included mean maximum temperature in June, July, and August
and precipitation for winter, spring, summer, and fall.

sitivity). With other variables held constant at their
means, the age ratio increased with June maximum
temperatures within the range of observed values (32–
38 �C). For July temperatures, however, the ratio was
insensitive to temperature up to a threshold of about
36 �C, at which point productivity seemed to collapse.
There was a weak tendency for the age ratio to in-
crease with August temperatures, but the ratio was in-
sensitive to August temperatures in comparison with
June and July temperatures.

The relationships between seasonal precipitation
and the age ratio revealed a common pattern for fall,
spring, and summer precipitation: the age ratio in-
creased curvilinearly and monotonically with precipi-
tation and the ratio was somewhat insensitive to higher
quantities of precipitation (Fig. 2). In other words, the
rate of increase in the age ratio decelerated with in-
creasing amounts of precipitation, resulting in an ap-
proximate asymptote for fall and summer precipitation.
The modeled response to winter precipitation was a
complex, curvilinear effect with high predicted ratios
at low and high amounts of winter precipitation and
the low predicted ratio at intermediate amounts. The
age ratio appeared to be least sensitive to fall precip-
itation and most sensitive to spring precipitation.

Because the age ratio seemed sensitive to July
temperatures and spring precipitation, we plotted mod-
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Fig. 3. Neural model predictions of northern bobwhite age ra-
tios in south Texas as a function of spring precipitation and July
temperatures (mean maximums, �C) during 1940–1997 (23
years missing). The predictions were generated by holding
mean maximum temperatures in June and August and total pre-
cipitation in winter, summer, and fall constant at their means in
the dataset.

Fig. 4. Estimated probability distributions for mean maximum
temperatures in south Texas for June, July (� � 2.5880, � �
2.2470), and August (� � 2.1145, � � 1.4954) during 1908–
1997 (11 years missing; Falfurrias station). Numbers under the
curves give approximate probabilities that mean maximum tem-
peratures fall within the indicated range. June temperatures
were modeled under the normal distribution (x̄ � 35.3, SD �
1.77) because off a poor fit to the beta distribution; probabilities
reflect the normal distribution truncated to the range of observed
temperature values.

el predictions at 3 arbitrary July temperatures as a
function of spring precipitation (Fig. 3). This is a
method of perceiving different portions of a multidi-
mensional response surface in 2 dimensions; the re-
maining variables were held constant at their means.
During cool Julys, the age ratio was insensitive to the
amount of spring precipitation and tended to be above
average. The ratio increased in a logistic fashion when
mean maximum temperatures in July were average. At
spring precipitation values exceeding 150 mm, the age
ratio was somewhat insensitive (increased at a slow
rate) to increasing precipitation. A similar, logistic-like
effect was estimated for hot Julys, but peak production
occurred at about 275 mm (10.8 inches) of spring pre-
cipitation and then stabilized.

The results given above need to be interpreted in
the context of the probabilities associated with weather
events that may inhibit or foster production as indexed
with an age ratio. For example, even if cool temper-
atures in July could override the effects of low spring
rainfall (Fig. 3), such temperatures would occur with
low probability (Fig. 4). Mean maximum July tem-
peratures below 34�C were estimated to occur in 3 of
every 100 years, whereas means below 35�C were
estimated to occur in 15 of every 100 years. Consider
also the high age ratios predicted for hot Julys with
high amounts of spring precipitation (Fig. 3). July tem-
peratures equaling or exceeding 39�C with spring
rainfall exceeding 300 mm (11.8 inches) were esti-
mated to occur in 2 of every 1,000 years, if spring
rainfall is independent of July temperatures. This ex-
pected frequency is based on the product of probabil-
ities from the July temperature (Fig. 4) and spring pre-
cipitation (Fig. 5) probability distributions.

DISCUSSION

Throughout this manuscript we have discussed the
age ratio as an index of production. We acknowledge
that it may be an ambiguous index because an age ratio
is a complex function of 9 demographic variables and
1 function (Guthery and Kuvlesky 1998). This com-
plexity means that there are many demographic and
time-based processes that may lead to the same age
ratio. Other indices of production, such as the per-
centage of juveniles in a population or percent summer
gain, are equally ambiguous. This statement is true be-
cause age ratio, percent juveniles, and percent summer
gain are mathematically related such that any one can
be derived from any other (Guthery 2002). Converting
the age ratio or percent juveniles to percent summer
gain requires knowledge of breeding-season survival
of adults. Otherwise, all of the production indices dis-
cussed above depend on the same driving variables.
So any commonly applied index of production con-
tains the same ambiguity because all are tautologically
equivalent.

Weather (temperature, precipitation) alters age ra-
tios through effects on demographic variables such as
the probability of nest success, proportion of hens that
lays, number of nesting attempts per hen, clutch size,
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Fig. 5. Estimated beta distributions for seasonal precipitation in south Texas for fall (� � 1.0342, � � 1.9060), winter (� � 1.1467,
� � 3.3001), spring (� � 1.1944, � � 2.6173), and summer (� � 1.0161, � � 1.9073) during 1908–1997 (11 years missing; Falfurrias
station). Numbers under the curves give approximate probabilities that precipitation falls within the indicated range.

length of the laying season, seasonal distribution of
nest initiation, and survival of adults and juveniles,
among others. Our modeling effort was an attempt to
synthesize weather influences on the complex demo-
graphic and dynamic influence leading to an age ratio.
The effort necessarily required simplification that re-
sulted in some level of mismatch between the variables
used in modeling and the reality of the field. For ex-
ample, we assumed data from the Falfurrias station
reflected conditions for the region of inference. Also,
modeling an age ratio on means (temperatures) and
totals (precipitation) fails to account for the frequency,
pattern, and intensity of weather events. A given mean
maximum temperature might or might not be associ-
ated with intense heat waves, and a particular total for
precipitation might or might not have accrued from a
deluge. Because of the complexity of an age ratio per
se and variation quashed by modeling on means and
totals, the neural model predictions were associated
with considerable uncertainty. The model performed
with at best moderate predictive power (explained
59% of variation in training data, 29% in validation
data).

A model with the specified level of performance
should be viewed with skepticism, especially since it
was developed with a relatively small sample (n � 35).
However, such a model may contain useful informa-
tion if it is consistent with known weather-related pro-
cesses affecting quail production. Also, such a model,
given empirical support, may be informative if it sug-

gests patterns or processes that have gone undiscov-
ered in previous work.

Certain aspects of the model predictions were con-
sistent with published results. Our analysis identified
spring precipitation as a key variable influencing age
ratios, as did Kiel’s (1976) work in the same region.
In contrast to Kiel (1976), however, our analysis sug-
gested an asymptotic effect of spring precipitation,
whereas his findings were linear over age ratios rang-
ing from 0.6 to 7.0 (we would have eliminated the
higher age ratio as an outlier). The asymptotic effect
seems more realistic, biologically, than the linear ef-
fect. Theoretically, the age ratio is an asymptotic func-
tion of the number of nesting attempts (Guthery and
Kuvlesky 1998), and the number of attempts in any
breeding season is time-limited. This would lead to the
expectation, if precipitation lengthens the breeding
season and thus increases the potential number of nest-
ing attempts, that production could be an asymptotic
function of precipitation.

Our results were consistent with the findings of
Heffelfinger et al. (1999) concerning weather effects
on age ratios of Gambel’s quail in Arizona. They re-
ported that mid-winter (Dec–Jan) precipitation was
more influential than early-winter (Oct–Nov) or late
winter (Feb–Mar) precipitation. Although we found
spring rainfall to be more important than rainfall in
other seasons, the Arizona and south Texas results
were consistent if timing of rainfall is placed in phe-
nological context. Gambel’s quail in Arizona start nest-
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ing before bobwhites in south Texas; the common
property between studies was the importance of rain-
fall associated with the beginning or early portions of
the nesting season. Heffelfinger et al. (1999) reported
declining age ratios with increasing July temperatures,
regardless of the quantity of rainfall. On the contrary,
we observed a threshold effect of July temperature at
a given rainfall (Fig. 1). However, the results were
consistent in that higher July temperatures were asso-
ciated with lower predicted age ratios in each study.

The threshold effect of July temperatures and other
results were consistent with known aspects of the ther-
mal biology of bobwhites. Heat stress, as evidenced
by gular flutter, appears at a temperature of about 35
�C in quails (Henderson 1971, Spiers et al. 1983). The
model predicted a collapse in production at a mean
maximum temperature of about 36�C in July (Fig. 1).
A possible process leading to a collapse in production
at temperatures near 35�C is reproductive quiescence
associated with heat stress. In contradiction, however,
the model predicted increasing age ratios with increas-
ing June maxima beyond the threshold value. These
results were enigmatic. The age ratio essentially failed
to respond to August temperature maxima, which may
merely indicate most production has completed before
August. We recognize that bobwhites may lay during
any month in south Texas (Lehmann 1984:84) but this
occurrence does not preclude a strong seasonal peak
in reproduction effort (Guthery et al. 1988). Based on
data presented in Guthery et al. (1988), the breeding
effort essentially collapses by July in the western Rio
Grande Plains and is in strong decline in the eastern
Rio Grande Plains. Data from the Chaparral Area were
reflective of the western Rio Grande Plains.

Rainfall in semiarid environments generally ben-
efits birds and, with the exception of winter precipi-
tation, this generalization held for bobwhite age ratios
in south Texas (Fig. 2). We can speculate that winters
with more precipitation are colder, leading to energy
stress that inhibits early season production. Indeed,
Koerth and Guthery (1988) reported that body fat lev-
els of bobwhites in April were negatively correlated
with total precipitation the preceding February for the
south Texas region. This conjecture would be consis-
tent with declining age ratios with increasing winter
precipitation up to about 225 mm (8.9 inches). How-
ever, we cannot explain why predicted production
would increase as rainfall increased above 225 mm.
The result may simply represent an anomaly in the
dataset.

We have tried to identify the deficiencies in the
data set we analyzed and readers should keep these
deficiencies in mind as we conclude with some gen-
eralizations. We observe, first, that quail production in
semiarid environments appears to respond to both tem-
perature and precipitation. It is conceivable, based on
empirical data (Heffelfinger et al. 1999, this study),
that lower temperatures can ameliorate the negative
effects of drought on production. Moreover, higher
temperatures can suppress the positive effects of pre-
cipitation. The weather-quail production system seems
to be nonlinear with thresholds and asymptotes. Ob-

viously, nonlinearity renders linear outlooks on the
weather-production relation incomplete and, in certain
domains of inference, inaccurate. For example, if the
production response to precipitation is approximately
asymptotic (Fig. 2), then there are precipitation levels
that invoke a null response in quail productivity. There
is a tendency for human beings to linearize and sim-
plify, which likely will lead to false expectations of
bobwhite population performance in the system we
studied.

MANAGEMENT IMPLICATIONS

The weather is beyond management control. How-
ever, knowledge of the nature and strength of weather
influences on bobwhite demography assists managers
in placing proper perspectives on practices aimed at
enhancing the reproduction performance of quail in
semiarid environments such as south Texas. Weather
variables may explain at least half, and perhaps more,
of the variation in bobwhite age ratios in south Texas
(Kiel 1976, this study). Adding random variation as-
sociated with depredation events (nest, chick, adults)
and other limiting factors to the variation explained by
weather leaves little room for variation explained by
habitat management practices. Moreover, the power of
weather suggests that such practices should be aimed
primarily at ameliorating the negative reproduction ef-
fects of low rainfall in association with high temper-
atures. Management for positive thermal effects in-
volves preservation of adequate amounts of herba-
ceous and woody cover to reduce heat loads near the
ground and provide thermal refugia (Guthery et al.
2001). In the absence of prohibitively costly measures
such as widespread sprinkler irrigation, it is likely that
management never will be able to fully reverse the
effects of weather on reproduction because the habitat
structure to which quail are adapted renders them vul-
nerable to thermal insult.
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